Visualizing Selection Bias in Causal Diagrams
Conference
65th ISI World Statistics Congress 2025
Format: IPS Abstract - WSC 2025
Keywords: causal inference, selection bias
Session: IPS 1022 - Causal Inference and Selection Bias
Tuesday 7 October 8 a.m. - 9:10 a.m. (Europe/Amsterdam)
Abstract
Causal directed acyclic graphs (DAGs) are often used to select variables in a regression model to identify causal effects. Outcome-based sampling studies, such as the ‘test-negative design’ used to assess vaccine effectiveness, present unique challenges that are not addressed by the common back-door criterion. Here we discuss intuitive, graphical approaches to explain why the common back-door criterion cannot be used for identification of population average causal effects with outcome-based sampling studies. We also describe graphical rules that can be used instead in outcome-based sampling studies when the objective is limited to determining if the causal odds ratio is identifiable, and illustrate recent changes to the free online software Dagitty which incorporate these principles.